Combinatorics and Complexity of Partition Functions

Combinatorics and Complexity of Partition Functions Alexander Barvinok

Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems.
The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates.

Specificaties

ISBN
9783319518282
Uitgever
Springer International Publishing AG
Druk
1e
Datum
01-01-2017
Taal
Engels
Bladzijden
303 pp.
Bindwijze
Hardcover
Genre
Nederlandstalige literatuur

Delen op

Meer op Athenaeum.nl over boeken

5 redenen om dit boek bij ons te kopen

  • Gratis verzending vanaf € 20,-
  • Advies per telefoon
  • Bestellen zonder registratie of login
  • Per fiets bezorgd, indien mogelijk
  • Vertrouwde service, veilige afhandeling

pro-mbooks1 : athenaeum